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Abstract Probabilistic evolution approach is a newly developed theory which may be
utilized for the solution of ordinary differential equations. The approach may directly
be applied for initial value problems of explicit first order autonomous ordinary dif-
ferential equation sets with analytic right hand side functions. Analyticity plays an
important role since it facilitates the expansion into direct power series which is the
key element of the approach. Direct power series appear not only in all applications of
probabilistic evolution but also show themselves as a promising tool for novel approx-
imation methods. In this work, similarities and differences between Taylor series and
direct power series are rigorously studied. Arbitrariness in transposed vector coeffi-
cients of direct power series is detailed. Equipartition theorem of direct power series
is conjectured and proven in order to obtain unique transposed vector coefficients.

Keywords Dynamical systems · Probability · Expectation values · Ordinary
differential equations · Linear algebra · Power series · Kronecker products

1 Introduction

Probabilistic evolution approach (PEA) is a relatively new approach for the solution
of ordinary differential equations. Although the most promising application is its
application to the solution of initial value problems, the approach has its roots in
quantum mechanics. Currently initial value problems of ordinary differential equations
and determination of quantum mechanical system motions by using expectation values
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are the two main areas of application of PEA. There are similarities and differences in
these applications for the quantum world and the classical mechanical world. Direct
power series is a series expansion that is crucial in PEA, and therefore in all applications
involving PEA. “Direct product and power” statement has a broader meaning, what
we have use here is peculiar to vectors and matrices of ordinary linear algebra and
is widely known as Kronecker products and powers. The necessities of probabilistic
evolution gave way to the introduction of direct power series. On the other hand,
direct power series may be considered as a series expansion at its own right and it is
an important tool for the formation of new approximation methods.

The method proposed in this paper is not a discretization method. The advantages
and disadvantages of discretization are known. There are many novel discretization
based methods in scientific literature for conserving certain properties of the sys-
tem under consideration and obtaining results in high precision [1–9]. This paper
builds on a method not based on discretization but on Taylor series and Taylor
coefficients.

There is a range of papers having probabilistic evolution and/or direct power series
as their focal points. The probabilistic evolution trilogy is the main source of infor-
mation [10–12]. In this trilogy, quantum expectation value dynamics is detailed. Also,
spectral properties of the evolution matrix, space extension, solution of the equations of
Liouville mechanics are other key points. The works of Metin Demiralp, Emre Demi-
ralp and Hernandez-Garcia are also milestone works of the theory [13,14]. These
were before the probabilistic evolution trilogy. The most recent papers are the two
joint works of Metin Demiralp and Emre Demiralp. In these papers, probabilistic evo-
lution and related approximants for unidimensional systems are detailed [15]. Novel
definitions for multilinear algebra are given and the use of multilinear arrays for the
solution of ordinary differential equation sets by way of probabilistic evolution is
explained [16].

Also, there are many published conference proceedings on this subject and related
subjects. The topics of these proceedings may be given in concise form as follows:
The convergence related issues of probabilistic evolution [17], space extension as a
tool for probabilistic evolution [18], application of mathematical fluctuation theory to
probabilistic evolution [19–21], simplifications using the properties of system under
consideration [22–25], study of the effects of singularities [26], quantum mechanics
problems in view of probabilistic evolution [27], numerical solution of certain classical
mechanics and statistical mechanics related problems [28,29], preliminary steps for the
numerical solution of celestial mechanics problems [30], studies for the applications to
equation sets [31], numerical solution of certain quantum mechanical problems [32–
36], high dimensional model representation and probabilistic evolution [37], initial
value related inconsistencies and probabilistic evolution [38,39], generalizations for
the numerical solution of initial value problems [40,41].

PEA is a powerful candidate for the solution of the initial value problems of ordinary
differential equations which are basically used to investigate the dynamical system
behaviors. The dynamical systems is a vast area to interpret many diverse phenomena
including the events of chemistry also. This makes the content of this couple of papers
important for also mathematical chemistry community members. We believe that these
will have sufficient impact there.
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Paper is organized as follows: The next section involves the definition of the direct
power series in ordinary algebraic entities, vectors and matrices through subsections.
The Sect. 2.1 emphasizes on the arbitrarinesses in the coefficient matrices of the
direct power expansions. The ascendingly populated nature of the arbitrarinesses is
investigated in a general look at the system vector direct powers and each arbitrariness
coming from these terms is reflected to the relevant coefficient matrix via an arbitrary
parameter. The second subsection focuses on the selection of these parameters to
make the relevant matrix coefficients minimum normed. This leads us to the so-called
“Equipartition Theorem”. The subsection covering the arbitrariness discussion in PEA
perspective completes the Sect 2. The paper is finalized via conclusion section. Kernel
separability, space extension and series solution via telescopic matrices to get the
analytic solution for conical triangular cases of PEA is given in a companion (but
somehow independent) paper [42].

2 Direct power series

There is a strong connection between direct power series and Taylor series. Therefore,
the analyticity requirements for the function to be decomposed are the same for Taylor
series and direct power series. Consider the point a on the real axis. Also consider a
point on the real axis which has a distance x from a. Then, x may be considered as the
independent variable and using Maclaurin expansion formed from there, it is possible
to form the expansion

f (x + a) =
∞∑

j=0

1

j ! f ( j)(a)x j =
∞∑

j=0

1

j ! x j ∂
j

∂a j
f (a). (1)

where we have preferred to employ the partial derivative symbol for future general-
izations even though just a single independent variable (a) is considered here.

Using the operator definition

L(x, a) ≡ x
∂

∂a
(2)

(1) may be stated as

f (x + a)=
∞∑

j=0

1

j ! x j ∂
j

∂a j
f (a)=

⎛

⎝
∞∑

j=0

1

j !L(x, a) j

⎞

⎠ f (a)=
⎛

⎝
∞∑

j=0

1

j ! x j ∂
j

∂a j

⎞

⎠ f (a).

(3)

Here, x is considered to be independent of a. (3) may be rewritten in a more compact
form using

eL(x,a) ≡
∞∑

j=0

1

j !L(x, a) j . (4)
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Then,

f (x + a) = eL(x,a) f (a) (5)

appears. In order to further the analysis, a generalization in the form of

f (a + t x) ≡ Ê(t, a) f (a) ≡ etL(x,a) f (a), t ∈ [ 0, 1 ] (6)

may be performed. Here, as t increases from 0 to 1, the left hand side, goes from
f (a) to f (a + x). Therefore, a propagation is under consideration on values of f .
Although the end result is the values of f , they are formed by images of f (a) under
an exponential operator. Therefore, Ê(t, a) is a propagator. Propagator is independent
from f . It depends on t and the initial point a. t represents the dynamics of the
system and therefore is named as “time”. Position is given by the operator L(x, a).
Propagation connects the state of the system at any two different times. The operator
on the exponent of the propagator, L(x, a), is the evolution operator.

The concept may be generalized to the two variable case as follows.

f (a1 + x1, a2 + x2) =
∞∑

j1=0

1

j1! x j1
1

∂ j1

∂a j1
1

f (a1, a2 + x2) . (7)

Using the operator definition

L1 (x1, a1) ≡ x1
∂

∂a1
(8)

in (7),

f (a1 + x1, a2 + x2) =
⎛

⎝
∞∑

j1=0

1

j1!L1 (x1, a1)
j1

⎞

⎠ f (a1, a2 + x2) (9)

may be obtained. The operator that performs the mapping from f (a1, a2 + x2) to
f (a1 + x1, a2 + x2) is again an exponential operator which has the evolution operator
on the exponent. Using the series expansion

eL1(x1,a1) ≡
∞∑

j1=0

1

j1!L1 (x1, a1)
j1 (10)

in (9), the compact form may be acquired.

f (a1 + x1, a2 + x2) = eL1(x1,a1) f (a1, a2 + x2) . (11)

The f (a1, a2 + x2) term on the right hand side may be analyzed in the same manner
using the expansion
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f (a1, a2 + x2) =
∞∑

j2=0

1

j2! x j2
2

∂ j2

∂a j2
2

f (a1, a2) (12)

and the operator definition

L2 (x2, a2) ≡ x2
∂

∂a2
. (13)

Avoiding the intermediate steps,

f (a1 + x1, a2 + x2) = eL1(x1,a1)eL2(x2,a2) f (a1, a2) (14)

may be formed. Since the operands of the two evolution operators are assumed to be
analytic, L1 and L2 are commutative operators. By using the commutativity property,
the product of two propagators may be written as

eL1(x1,a1)eL2(x2,a2) = eL1(x1,a1)+L2(x2,a2). (15)

Here, multivariability may be shown in a compact form by using vectors and matrices.
Under the definitions

x ≡
[

x1
x2

]
, a ≡

[
a1
a2

]
(16)

a new evolution operator

L (x, a) ≡ L1 (x1, a1) + L2 (x2, a2) (17)

may be defined. Differentiation with respect to a1 and a2 is given by the gradient
operator

∇a ≡
⎡

⎣
∂
∂a1
∂
∂a2

⎤

⎦ (18)

to form the compact expression

L (x, a) = xT ∇a (19)

for the evolution operator. This operator is the two variable counterpart of the afore-
mentioned L (x, a). The two variable counterpart of (6) is then

f (a + tx) ≡ Ê (t, a) f (a) ≡ etL(x,a) f (a) , t ∈ [ 0, 1 ] . (20)

The number of variables, which is also the number of elements of x and a, is not
explicit in (20). Utilizing the definitions
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x ≡
⎡

⎢⎣
x1
...

xN

⎤

⎥⎦ , a ≡
⎡

⎢⎣
a1
...

aN

⎤

⎥⎦ , ∇a ≡

⎡

⎢⎢⎢⎣

∂
∂a1
...

∂
∂aN

⎤

⎥⎥⎥⎦ (21)

it is possible to say that (20) is valid for all positive integer N values. Here, Ê (t, a) is
the propagation operator and L (x, a) is the evolution operator. x is the system vector
and N denotes the system’s degree of freedom or, in other words, dimensionality. The
case where t = 1 is of importance. A vector with N elements depicts a point in N
dimensional Euclidean space. Going from one point to another is thus given by

f (x + a) = eL(x,a) f (a) (22)

using the propagation operator. In order to figure out the explicit structure of (22),
consider the Taylor expansion of its right hand side. That expansion includes L (x, a)2.
That is

L (x, a)2 =
(

xT ∇a

) (
xT ∇a

)
=

(
xT ∇a

)
⊗

(
xT ∇a

)
=

(
xT ⊗ xT

)
(∇a ⊗ ∇a)

=
(

x⊗2
)T (

∇⊗2
a

)
(23)

since the product of two scalars is also the direct product of the same two scalars
and direct product is distributive over product. Here and in the rest of the paper ⊗
symbol is used to denote direct product and direct power in superscripts. For matrices
and vectors, direct product is exactly same as Kronecker product and power even
though they are defined on a broader set of elements and have more abstractness than
Kronecker product and power. This may be generalized to obtain the result

L (x, a)k =
(

x⊗k
)T (

∇⊗k
a

)
, k = 0, 1, 2, . . . (24)

Using (24) in (22) and utilizing the Taylor expansion of the exponential term, the
explicit structure may be obtained in the form of

f (a, x) =
∞∑

j=0

1

j !L (x, a) j f (a)

=
∞∑

j=0

1

j !
(

x⊗ j
)T (

∇⊗ j
a

)
f (a)

=
∞∑

j=0

1

j !
(
∇⊗ j

a f (a)
)T

x⊗ j . (25)

If the coefficient vector definition

F j ≡ 1

j !∇
⊗ j
a f (a) , j = 0, 1, 2, . . . (26)
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is utilized, direct power series is then

f (a + x) =
∞∑

j=0

FT
j x⊗ j . (27)

The function is decomposed as infinite number of inner products. Each term of the
infinite sum involves vectors of different number of elements compared to the other
terms. If the trivial case where N is chosen as 1 is under consideration, each term of
the infinite sum involves scalars. That case is just a rewriting of Taylor expansion of
a univariate function.

2.1 Arbitrariness in coefficient vectors

Direct power series is a rearrangement of Taylor series. The only subtlety between
direct power series and Taylor series is the arbitrariness in coefficient vectors of direct
power series. Although direct power series coefficients may be calculated by (26), there
are infinitely many choices for the coefficient vectors in the expansion. This arbitrari-
ness appears in all the coefficient vectors except for the constant term and the terms
having only the first derivatives. This is a consequence of the nature of direct powers.

Consider the term of the expansion where j is 0. This term has a one element
coefficient vector multiplied by a scalar. The next term has j as 1. This term is the inner
product of a coefficient vector with the system vector which is an N -element vector
containing the variables of the system. The term with j as 2 contains x⊗2. This vector
has N 2 elements. For each xi x j in this vector where j is different from i , there is an
x j xi element. Therefore, there are linear dependences between these elements of x⊗2.

Effects of these linear dependences may be seen in the expansion of a function with
two variables. Direct power expansion of a function with two variables is

f (a1 + x1, a2 + x2) =
∞∑

j=0

FT
j x⊗ j . (28)

Taylor expansion of the same function is

f (a1 + x1, a2 + x2) =
∞∑

j1=0

∞∑

j2=0

f j1, j2 x1
j1 x2

j2 (29)

with Taylor coefficients

f j1, j2 = 1

j1! j2!

(
∂ j1+ j2 f

∂x j1
1 ∂x j2

2

)

x=0

. (30)

Since the decompositions are exact equalities, right hand sides of (28) and (29) should
be equal, thus satisfying
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∞∑

j=0

FT
j

[
x1
x2

]⊗ j

=
∞∑

j1=0

∞∑

j2=0

f j1, j2 x1
j1 x2

j2 . (31)

The only unknowns in (31) are the transposed vector coefficients FT
j s. For the equality

to hold, all coefficients corresponding to the same powers of the variable x1 and x2
should be equal. The constant term corresponds to the case where j, j1 and j2 are all
0. Then, it is possible to conclude that

FT
0 = f0,0 = f (0, 0) . (32)

Therefore, FT
0 is a scalar. A similar analysis for the terms containing only the first

powers of the system variables by themselves yield

FT
1 = [

f1,0 f0,1
]
. (33)

FT
1 is a transposed vector with two elements. The next step is to observe the coefficients

for the terms where ( j1 + j2) is 2. The second and the third terms of x⊗2 are equal.
Therefore, they correspond to the same Taylor term. Equating both sides of (31) for
the terms and solving the FT

2 ,

FT
2

[
x1
x2

]⊗2

= f2,0 x2
1 + f1,1 x1x2 + f0,2 x2

2 (34)

may be acquired. Making the definition

FT
2 ≡

[
F (2)

1 F (2)
2 F (2)

3 F (2)
4

]
(35)

the solution for the elements of the transposed vector coefficient is

F (2)
1 = f2,0

F (2)
4 = f0,2(

F (2)
2 + F (2)

3

)
= f1,1. (36)

Although first and last elements of the vector may be determined uniquely, there is
arbitrariness for second and third elements.

These results show that it is possible to determine FT
0 and FT

1 uniquely. FT
2 may not

be determined uniquely. There is arbitrariness for all the coefficients of direct power
series except for FT

0 and FT
1 . This is valid for all N -variate functions which may be

expanded into Taylor series.
For the decomposition of an N -variate function, it is important to determine the

number of linearly dependent elements for each transposed vector coefficient. For
an element to be linearly dependent to other elements, it should contain at least two
different xi factors. The elements that are linearly dependent to each other have the
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same number of occurrences of xi considering that all powers are given as products
of terms. If in a set of linearly dependent terms, the power of xk is given by mk , then
m1+· · ·+m N = j . The number of elements for each set of linearly dependent elements
may be calculated. This question may be restated as follows for all F j : “Consider the
letters x1, x2, . . . , xN . How many distinct j-letter words may be formed where xk

appears mk times and k = 1, . . . , N?” The answer to this question is

n = j !
m1! . . . m N ! . (37)

This answer states that the number of terms having j factors with xk having multiplicity
mk where k = 1, 2, . . . , N is j !/ (m1! · · · m N !). These terms create the arbitrariness
in transposed vector coefficient FT

j .
In order to continue this analysis, it is necessary to define a permutation operator

π̂ . Let

uk (x1, . . . , xN ) ≡ π̂k
(
xm1

1 . . . xm N
N

)
, k = 1, 2, . . . , n. (38)

π̂k permutes the factors of its operand. k parameter uniquely defines a permutation
and it takes an integer value from 1 to n. If a linear combination in the form of

u ≡ α1u1 + · · · + αnun (39)

is defined, then

u ≡ (α1 + · · · + αn) xm1
1 . . . xm N

N . (40)

This is due to the fact that all uk function values are equal. u has 0 value as long as

α1 + · · · + αn = 0 (41)

is satisfied. Therefore any n coefficients which add up to 0 cause the term to vanish.
Using such coefficients,

n∑

k=1

αkuk (x1, . . . , xN ) = 0 (42)

may be formed. Direct product of direct powers of Cartesian unit vectors may be
utilized to form the operands of the permutation operator. By a careful investigation,
it is possible to form uk as

uk (x1, . . . , xN ) = π̂k

((
e⊗m1

1 ⊗ · · · ⊗ e⊗m N
N

)T
x⊗ j

)
, k = 1, . . . , n (43)
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and using (43) in (42), the linear combination is

n∑

k=1

αk π̂k

((
e⊗m1

1 ⊗ · · · ⊗ e⊗m N
N

)T
x⊗ j

)
= 0. (44)

Then each term of (27) may equivalently be stated as

FT
j x j =

(
FT

j −
n∑

k=1

αk π̂k

(
e⊗m1

1 ⊗ · · · ⊗ e⊗m N
N

)T
)

x⊗ j . (45)

The transposed vector coefficient on the right hand side is dependent on αk, k =
1, . . . , n. Transpose of this vector is

F j (α) ≡ F j −
n∑

k=1

αk π̂k

(
e⊗m1

1 ⊗ · · · ⊗ e⊗m N
N

)
(46)

where eT
k α = αk . In (27), F j (α) may be used instead of F j . The α parameters are

arbitrary parameters which should add up to 0. These steps may be recursively per-
formed for all sets of linearly dependent terms for a certain j value. By making certain
choices for these newly introduced parameters, it is possible to force the transposed
vector coefficient to have the desired characteristics under some limitations.

2.2 Equipartition theorem

One desired characteristic for transposed vector coefficients can be minimal norm.
For ease of computation, norm square minimization may be used as objective func-
tional. Also, the restriction shown by (41) should show itself as a Lagrange multiplier.
Therefore the functional is

J (α, λ) ≡ ∥∥F j (α)
∥∥2 + λ

(
n∑

k=1

αk

)
. (47)

Differentiating with respect to λ and equating to 0, gives

n∑

k=1

αk = 0 (48)

which is the desired restriction. On the other hand, differentiation with respect to αk

yields

∂
∥∥F j (α)

∥∥2

αk
+ λ = 0, k = 1, 2, . . . , n. (49)
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Using (46) in (49)

2αk − 2π̂
(

e⊗m1
1 ⊗ · · · ⊗ e⊗m N

N

)
F j + λ = 0, k = 1, 2, . . . , n (50)

is obtained. Summing both sides over all the possible subindices of α

2
n∑

k=1

αk − 2
n∑

k=1

π̂
(

e⊗m1
1 ⊗ · · · ⊗ e⊗m N

N

)T
F j + nλ = 0 (51)

and using (48),

− 2
n∑

k=1

π̂
(

e⊗m1
1 ⊗ · · · ⊗ e⊗m N

N

)T
F j + nλ = 0 (52)

may be acquired. The terms of the finite sum in (52) are

π̂
(

e⊗m1
1 ⊗ · · · ⊗ e⊗m N

N

)T
F j = 1

j !
∂ j f (a)

∂am1
1 · · · ∂am N

N

(53)

since the order of differentiation may be changed for a continuous multivariate func-
tion. Using (53) in (52) and solving for λ, it is possible to deduce

λ = 2

j !
∂ j f (a)

∂am1
1 · · · ∂am N

N

. (54)

This result may be used in (50) to form

αk = 0, k = 1, 2, . . . , n. (55)

Therefore, F j is norm minimized F j (α). Norm minimization creates uniqueness and
carries us to the expansion given in (26) and (27). This result may be stated in the
framework of a theorem named as equipartition theorem of direct power series.

Equipartition theorem of direct power series says that the coefficients of the expan-
sion in (27) may be calculated by (26). Since some of the elements of x⊗ j linearly
dependent, it is possible to form a vector F j (α) dependent on arbitrary parameters
instead of F j . F j is the vector with minimum norm of all possible F j (α). Minimum
norm implies equal distribution amongst the equivalent elements of direct powers of
x. Therefore, the total coefficient value is divided equally amongst all terms of the
equivalency set for all equivalency sets.

The cause of the arbitrariness in direct power squared term may be seen in (23).(
xT ∇a

) ⊗ (
xT ∇a

) = (
xT ⊗ xT

)
(∇a ⊗ ∇a) says that direct product of two inner

products is equal to inner product of two direct products. However, inner product
of two direct products is really working in a high dimensional space and creating a
projection at the end. On the other hand, direct product of two inner products is the
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product of two projected entities. Therefore, inner product of two direct products is
more general. Possible arbitrariness vanishes at the last step. For the case where N
is 2, an arbitrary value may be added to second element of (∇a ⊗ ∇a) and the same
arbitrary value may be subtracted from third element of (∇a ⊗ ∇a) without changing
the result. This is the cause of arbitrariness for the direct power squared term. Similar
analysis may be performed for higher direct powered terms.

Equipartition theorem is not the only way to go for uniqueness. It is necessary to find
out which impositions produce the desired result for different kinds of applications.

2.3 Arbitrariness from probabilistic evolution perspective

PEA for the solution of the initial value problem of a set of explicit first order ordinary
differential equations with analytic right hand side functions involves the determination
of the exponential of evolution matrix. In this case, direct power series expansion is
performed for all the right hand side functions and transposed vector coefficients
are stacked in the given order to form matrix coefficients. The resulting matrices are
direct multiplied by unit matrices to form the evolution matrix. Due to the nature of
differentiation, the solution of the initial value problem is related to the exponential of
this matrix. In order to obtain a unique numerical approximation, this matrix should
not contain any arbitrary parameters. Equipartition theorem creates a unique evolution
matrix, consequently a unique approximate solution of the initial value problem.

It is also important to point out that evolution matrix is an infinite matrix. Therefore,
the truncation of this matrix creates the numerical approximation. Convergence issues
due to this truncation are related to the eigenpairs of evolution matrix. Therefore,
arbitrary parameters may be utilized in such a way that evolution matrix exhibits
the desired structure especially in eigenvectors for the case of triangularity. The case
of nontriangular but upper Hessenberg block form can be facilitated by not only
eigenvectors but eigenvalues also.

It is known from previous works of the authors that block triangularity of evolution
matrix plays an important role in convergence. In the most general case, evolution
matrix is an upper Hessenberg block form. Upper Hessenberg block form should be
avoided when possible. Block triangularity facilitates the calculation of the exponential
matrix thus reducing the computational burden. Therefore, if possible, the arbitrary
parameters should be chosen in such a way that block triangularity is observed. This
is an optimization problem the solution of which may or may not exist depending on
the structure of the right hand side functions and the order of truncation.

3 Conclusion

In this paper, we have investigated the formation and utilization of direct power series.
The formation of arbitrariness of transposed vector coefficients of direct power series is
shown. Equipartition theorem is conjectured as a natural way to form unique transposed
vector coefficients. The logic for the proof is explained in detail. We enumerate what
we have obtained as original findings below.
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1. Although the relation between Taylor series and direct power series was already
known, it was not investigated extensively. Some important points were given by
words in the previous papers involving direct power series. This paper shows the
similarities and differences between Taylor series and direct power series.

2. The arbitrariness in transposed vector coefficients is shown. Using the approach
given in this paper, it is possible to calculate the number of arbitrary elements for
each term of direct power series.

3. Equipartition theorem is proposed for forming unique transposed vector coeffi-
cients. It is shown that minimum norm restriction on vectors with the arbitrariness
creates uniqueness in which total coefficient value is equally divided amongst all
terms of the equivalency set for all equivalency sets.

Direct power series is a tool for probabilistic evolution. Therefore, these findings
are expected to promote the use of probabilistic evolution in the study of dynamical
systems.

On the other hand, direct power series is an infinite series expansion which may be
used in the formation of novel approximation methods. Since Taylor series and direct
power series are strongly related, the application of direct power series in situations
where Taylor series methods are traditionally applied may facilitate the formation of
fast converging numerical approximation methods. This is one of the new horizons
for science of computation.
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Turkey, 2012), pp. 246–249, ISBN: 978-1-61804-115-9

26. N.A. Baykara, M. Demiralp, in Proceedings of the 12th International Conference on Computational
and Mathematical Methods in Science and Engineering, CMMSE 2012, vol. 1, ed. by J. Vigo-Aguiar
(Murcia, Spain, 2012), pp. 153–156, ISBN: 978-84-615-5392-1

27. M. Demiralp, in Proceedings of the 12th International Conference on Computational and Mathematical
Methods in Science and Engineering, CMMSE 2012, vol. 2, ed. by J. Vigo-Aguiar (Murcia, Spain,
2012), pp. 449–459, ISBN: 978-84-615-5392-1

28. B. Tunga, M. Demiralp, in Proceedings of the 12th International Conference on Computational and
Mathematical Methods in Science and Engineering, CMMSE 2012, vol. 3, ed. by J. Vigo-Aguiar
(Murcia, Spain, 2012), pp. 1186–1197, ISBN: 978-84-615-5392-1

29. B. Tunga, M. Demiralp, AIP Conf. Proc. 1479(1), 1986 (2012). doi:10.1063/1.4756577
30. M. Demiralp, in Proceedings of the 12th WSEAS International Conference on Systems Theory and

Scientific Computation (ISTASC12), ed. by D. Biolek, N.A. Baykara (WSEAS Press, İstanbul, Turkey,
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